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(and where they are observed in Ha).

~~An exact analytical solution for magneto-atmospheric wave modes is found
in the case of an isothermal atmosphere permeated by a uniform horizontal
magnetic field , without making the usual short-wavelength approximation.
This solution is appl ied to an idealized model of the l ow—corona-chromosphere
transition region as a model for flare-induced coronal waves. - Disturbances
propagate horizontally in the waveguide formed by the rapid density increase
into the chromosphere below and the rapid increase in Alfvén speed into the
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~The exact solution mentioned above is also used in conjunction with a
simple two-layer model of a sunspot penumbra to further study the mode of
running penumbral waves. The l owest .°plus ”~eigenmode of the model is in good
agreement with observations of penumbral waves .
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T H E  N A T U R E  OF R U N N I N G  P E N  L M B R A L  W A V E S

A L A N  H. NYE’  and J O H N  H. T H O M A S ~~
t

Ma .r—P la , tc-k—Insi ittiif ür P/I I - s,A 1111(1 A SIrOP/ Ii ’ .SI A Miøi ie/ i , Gi ’r,nw,r

(Received 22 March : revised 25 June, 1974 )

AbAtract. A model ofa sunspot penumbra , including the effects 01 nhagnet ic field, compressibilit y , and
buoyancy, is studied in order to ident ify the m ode of running penumbral ssUseS . It is found that the
penumbral waves may he identi f ied with gravity- modified magneto-acoustic ~saves o f Ihe ‘plus ’ lype
t hat are vertically trapp ed at photospheric levels. Although most of the wave energy is conlained in
t he penumbral photosphere and su hp hotosphere, t he max im u m  vertical seloc i t ~ occurs in t he chro-
mosphere where (i) the wav es are evanescent and (ii) Ihe ve rt i cal velocity is in fact obser v ed (in H t j .

I. Introduction

Recent observations have disclosed an interesting pattern of velocity fields in sun-

spot s. The most recent discovery is that of waves propagating radially outward in
sunspot penumbrae (Zirin and Stein , 1 972: Giovanelli , 197 2). Zirin and Stein refer to
these waves as running penumbral waves. W ith the further observations of Giovanelli
(1974), we now have a fairly clear picture of the properties of these waves. The purpose
of this theoretical paper is to study possible wave modes in a model of a sunspot
penumbra in order to identify the mode of the running penumbral waves. We shall
argue that the running penumbral waves are gravity-modified magneto-acoustic
waves (of the ‘plus’ type) that are verticall y trapped at photospheric levels.

Giovanelli (1974) has summarized the observations of running penumbral waves ,
and he presents the following picture. The vva v es are observed in Hz by means of
their line-of-sight velocity. They occur in almost every sizable spot yvi th a regular
stable structure , but only rare ly in active spots with comp lex structure. The waves
travel outward in the penumbra at a typ ical speed of 15km s t . The observed waves
have periods in the range 1 80—240 s ~nd horizontal wavelengths in the range 2350—
3800 km. Observations near the limb have failed to reveal any horizontal motions
assoc iated with the penumbral waves , so the wave motion is predominantly vert ical
in Hz.

Thus far no detailed theoretical study of the mode of the running penumbral waves
has appeared, although Moore (1973) has studied the related problem of the genera-
t ion of penumbral waves in the umbra. Zirin and Stein (1972) tentatively identified
the penumbral waves as sound waves , w hereas Giovanelli (1972 , 1 974) identified them
as Alfvén waves. The penumbral waves , ~v i t h their predominant vertical motions , no

V doubt involve the combined effects of restoring forces due to compressibi lity, magnet ic

* Also National Science Foundation Predoctoral Trainee , Dept. of Mechanica l and Aerospace
Sciences, University ol Rochester . Rochester . N.Y.. U.S.A.
‘ On leave of absence from the Dept. of Mechanical and Aerospace Sciences and the C. E. Kenneth
Mees Observatory. University ol Rochester , Rochester . N.Y., U.S.A.
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fi e ld, and huo~:tncy. and a comp lete theory should account for all three effects . rhis
Is done in the prese Ilt paper.

In studyIng penumbral vyav e s , we face a difficulty, in that there seems to be no
comp lete . genera lly accepted penumbral model on vs hich to base our calculat ions.
We have t herefore constr ucted a penumbral model for use in studs ing wa v e  tiiodes. 

—

This model (presented in Section 3), w hile simple enough to permit analysis of’ vsa v e
modes , nevertheless reproduces a ll of the relevant features of penumbral structure .
and is in reasonable quantitat ive agreement vs ith ohserv alions. We have assumed the
penumbral magnet ic held to be purely horizontal , but sar\ ing vs ith height. True pe-
numbra! magnet ic fields are not purely horizontal , althoug h they may be ver y nearl y
so (Nishi and Makita , 1973). There is some disagreement over the inclination of ’ the
magnetic field in a penumbra (see Beckers and Schröter (1969) for a summary of
observat ions). The assuniption of a horizontal field here is mostl y a matter of con-
ven ience : the basic mechanism we propose for the vertical trapping of penumbral
waves w ill also work for an inclined field. We have also taken our model to be horizon-
tally uniform — that is, we have not tried to represent the horizontal filamentary
structure of a penumbra or the rad ial geometry.

In Sect ion 2 we present the basic equations for waves in our model penumbral
atmosp here. The basic atmosphere is completel y characterized in these equations by
the vert ical distribution of three parameters : the sound speed c, t he Alfvén velocity
t A, and the local density- scale height H. In order to illustrate t h e  properties of the
var ious wave modes that can occur , we study t he dispersion relation that holds in the
case of constant c. v .5. and H. In Section 3 we present the basic penumbral model in
terms of the distributions of c, FA . and H with heig ht. In Section 4 vv e show that the
penumbral waves may be identified with ‘plus ’ modes that are trapped in t he photo-
spheric-sub photosp heric region in our model. We discuss these modes further in
Section 5.

2. Basic Equations and Dispersion Relations

In our simplified treatment ofa sunspot penumbra we shall ignore t he radial spreading
of magnetic field lines, and consider the undisturbed magnetic field to he purely
horizontal (in the x-direction) and varying with height i.e., B0 =(B0(z ). 0,0).
We assume the field permeates an inviscid, perfectly conducting, plane strat if ied
atmosp here with constant acceleration of grav ity g (=0.274 km ~_ 2 )  in the negative
z-d irection. The undisturbed pressure , dens ity, and temperature are denoted by
Po (:) ,  Q0 (z) ,  and T0 (z) ,  respect ively. The atmosphere is in hydrostat ic equilibriuti~,
so that

d (  B~~l P o + ) = — ~~0g . (1)
dz \ 8mj

We then consider small adiabatic perturbations of this equilibrium atmosp here.
We consider wave vectors only in the .v: plane , and assume that the perturbation
velocity 11= (u , v , iv) has the form u=fl  expi (k ~x—w z ) , with u =u(:)=  (u (z ) .  

~~

6
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t~~(:)). Start ing with the linearized equations of continuity, energy, and momentum ,
we can el iminate the pressure and density perturbations , and arr ive at the set of three
linearized momentum equations for the veloc i t y  components i~. i~, and ii - , in wh ich the
bas ic atmosphere is comp lete ly described by t he sound speed c ( z) .  t he A lfvén velocity

- 
t’A (_ ) . and the local density scale height H (z) ,  defined by

B~ 1 1  
~j U 

(2)
4~~ o ~ &1o

The linearized momentum equations are the following:

(w 2 
— c 2k~) ü + ik~c 2 

— ik~g t ~ = 0 , (3)

(w 2 
— v~k~) 0 = 0, (4)

d2 s~’ ~ d + v~1di~’(c 2 +v ~) 
dz 2 +Ld (L + v ~) —  

H ]  dz + (w — v ,~k~)~~’+

rdc2 c 2 -‘ dz2
+i kj  — —  - +g  I ü + i k ~c2 =0 (5)

Ldz H J dz

We can eliminate the horizontal velocity components ü and 0 from the system of
Equat ions (3)—( 5 ) to obtain a single equation for the vertical velocity si’, in the form

dii’
d:2

)
dz +

~~~~~~~~
O
~ 

(6)

here

I I w4 dc~ dv~’1A (z) = — + I - - 

~~~ 2 2 + (w 2 
— c 2k ; )  — I xH L (w — e k ~) d z  d:J

x [v ,~(w 2 .— c2k~ ) + c 2w2] - ’  (7)
and

B(z ) = [(w
2 

— v~k~) (w 2 — c 2 k~) — g (g — 

( 2

)  
k~ —

- q X 
(2  2 2

)
~~~~~~~[t A ((0 - c 2k~) + c 2

w2 ] t . (8)

Wi th the transforma tion

cb ( z ) = i ~’(z ) exP [ 4 f A ( z) d z J  (9)

Equation (6) assumes the form

(10)

7
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where

d-l
— 

d: 
( II)

Here, k~l
2 is roughly proportional to the kinetic energy of wave motion. Equation

(10) is t he propagation equation for w aves in an atmosp here with verticall y vary ing
c2 , t’~ , and H. For given distr ibutIons ~f 1~

2 (:). I~~ (:), and 11 (z ), we can use the expres-
s ion for 1 (:) (Equat ion ( I I ) )  to distinguish roughly between local regions where a
wave wit h a particular frequency w and horizontal wavelength k~ is vertically propa-
gating ([ >0) or vertically evanescent ( f <0). We shall use this approach for our
penumbra l model in Section 4.

The simp lest case to stud y is that of constant c 2 , r~, and H. We shall consider this
case now in order to show the kinds of w a v e  modes which can occur. Although this
case does not apply str ictly to a real penumbra , or in fact to our penumbral model, vs c
can nevert heless apply the resulting dispersion relation locall y to get an approx imate
picture of the wave modes. We can also approximate a continuous vertical variation
of the parameters in the penumbra by a ser ies of layers in which they are constant. In
the case of constant c2 , i’~ . and H. Equations (3)— ( 5) have constant coefficients. and
we can assume a solution of the form ü(:)=ü exp( i k ...- +z/ 2 H ) , where ü= (ü, z . i~ ) is
a constant vector. Here, the factor exp(: 2H) accounts for the fact that , to conserve
energy, the perturbation amplitude must grow as the density decreases. The system of
Equations (3)—(5) then becomes (cf., Yu , 196 5):

(w 2 
— c2 k~) ü + ik~ [ 1k c 2 

— 
(g 

— = 0 , (12)

(w 2 — v ~k~) f = 0 , (13)

ik~ [ ik ~c 2 + (g — u + — t~k~ ) — (c 2 + t’~ ) x

(k ~ + 4H2)l~
=0. (14)

The dispersion relation for waves is obtained from the condition for nonzero solu-
t ions of the homogeneous system (12)—( l4), i.e.. the vanishing of the determinant of
the coeffic ients. This y ields the dispersion relation

(to 2 
— r~k~) 

{w
4 

— (c
2 + v~ ) (k ~ + + 4112)  

w 2 +

+ c 2 v~k~~(k~~+ k ~ +
4~~z) Y( ~ )k~}= o. ( I S )

We now discuss the various wave modes given by this dispersion relation, w ith some
comments on their relation to running penumbral waves.

8
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2. 1. flil PURE ACOt S i l(’ ~tUi )t

The dispt’r~i..os rel.iiion ( IS )  is sa t i~iicd 51 i ih i c  =~- 2 k~ for the particular imag inary
:ilue of k. given by 1k. = ( 2 11)— ( c ). I r im ~~lU ati 011~ ( I 2)—( 14) we se . the cor-

responding niot is li h:ts :7 �O. w hereas i~~ ;~~ = 0. This nmde is thus a purel y compres—
si~ ii,il. acoust ic mode ss t :h dispersion relation ident ical to that of a homogencuu..
isothertiial gas . This can occur si nce the motion is horizontal and parallel :. , the
magnetic field , and thus there is no contr ibution from buoyant or magnetic )r L .= .

The amp litude behave s a~
- 

[/ 1
U = u exp [~

and t hus grow s exponentia l l y with height (since II <c 2 . g for stabilit y of the inpertur-
bed atmosphere (Yu . 196 5)). The total momentum and energy are finite. how e ser .
pruv ided there is a osser bound, r’ confining the motion to a semi-infinite range of:.
Th is mode is identic:il to the Lamb mode in the non-magnetic case , except that here
the scale height H is modified by the magnetic field. Since thh mode has no vertical
motIon , it can nt be associated w ith the running penumbral waves.

2.2. THE PURE ALF~ E\ MODE

.A n i t  of the dispersion relation (I 5) . for arbitrary k . is given by ~~~ = ~~~ which is
the s ,iT~’ as the dc .per’ on relation for a pure A !fsén ~vave in a homogeneous atmos-
phere v ith uniform magnetic field With w~ = ~~~ hovs eser . the ot her factor in the
dis pers io n relation (51 is in general not zero, and thus Equations ( l 2 )— ( l4 )  show that
t l i~ mot :3ni has f �0, whereas 0= i~=O. The motion is purel y horizontal and purely
tran~se r~e to the magnetic field. Thus, the pure Alfvén mode in a stratified atmosphere
is . SO to speak , plane polarized. vs it h no vertical motions. W ith 0=0 there is no con-
tr ibution from the buoyancy force, and. further , wit h 0=0 the motion is incompres-
s ible, so the vv a ’e behaves as a pure Alfvén wave (vv ith the amp litude factor
exp(: 2 /-I ;). Aga in, since this mode has no vertical motions , it can not be assoc iated
w ith the running penumbral \ sa \ e s .  We turn now to the remaining roots of the dis-
pers ion relation (1 5 ) .  which do permit vertical motions.

23 .  THE PLUS AND \ t lNU s  v:onrs

The rema ining roots of the dispersion relation ( IS) are given by

I 2
(7 = ~ {~c 2 + i :~) ~~~ + k~ + 

41/2) ± 
[

~~ 2 + i~~~)
2 (k. + h: + 4 J r )  

—

— ~~~~~~ (
~ 

+ k~ + 
~H 2)  + 4g (g — ~~)k~]12} . (16)

We shall refer to these two modes as the ‘plus ’ and ‘minus ’ modes. These modes
involve the interaction of all three restoring forces : buoyant , pressure , and magnetic.

9

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



r ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---—

~~~~~~~~~~~~~

-

~~

-- 

~~~~~~~~~~~~~~~~~~~~~~~~ 

404 vi sN II. ‘01 AN t)  J ul45 II . I i loSIA5

1hey’ reduce to more l~tmi lta r vs as e titodes in certaill I ~mit~tig cases , For examp le, in
the limit of ’ vanishing magnet ic f ield ( i~~ 0) they reduce to the acoustic and g ravi t ~
modes of ’ an isot hermal atmosp here ( see , f ur example. Thomas t 1  a!.. 197 1i . A lien-
natively , in the limit of no strat i f I cat ion ( / 1  -= i . g — .0), they reduce to the fast and
s low niagnetoacoustic staves in a homogene us atmosp here (see . for e\ .Iitip Ie . Oster-
brock, 1961) . For intermediate cases (such as for penumbral conditi uns . ste can look
at t he modes as being either magnetically modified acoustic-gra s it~ waves  or gras ii’,-
modified magnetoacoust ic s t a s e . . Ys e  shall cont inue to use the terms plus and minus
modes here.

The plus and minus modes , for k : =0 . are shown schematicall~ in a diagnost ic
• diagram in Figure I. The :is~ mptot ic hehas ior of the dispersion relation ( 16) for

k.=0 is such that

, C
2 

+ ~~ ,

w~. —
~ . , w ’i —- .0 for k — .0, (17)

411- -‘

and
k~ max( c 2 . t ,~), a7 i,~

’ mm (c 2 . i.~) for k~. . ( 18 )

/
~ 

~~~~~~~~~~~~~~~~~~ /
/

- 

/ 
/ 
/ 
/~~~~~~~~

/
/~~~~~~~_ 

- k~ mm lc~,vA~

Fig. I. Schematic diagnostic diagram of Ihe plus and minus modes, showing curves for k , - 0
(solid lines ) . The plus mode has a finite cuto ff f requency as k ,—-.0. For k~ - - ‘- .  the plus and minus
modes approach the dispersion lines for the pure acoustic and pure Alfvén modes. For strong stratifi-
cation and stea k magnel ic field, the minus mode approaches the line ‘ =k ,r ,5 from above rather

than bek’ * .
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• In t he diagnostic diagram (Figure I), t here are verticall y-propagat ing waves (I.~ —0)
abov e the to , curve and below the w_ curs-c , and evanescent waves (k~ <0) in the
region between the two curves .

The p l us mode has a finite cutoff frequency of (w ~ ), = (~.2 + ~~ 
)I / 2 / 2 / 1  as k~ 0.

• Estimates of this cutoff frequency- at photospheric levels in a penumbra give values
just a little lower than the frequencies of penumbral waves. This suggests that the
penumbral staves might be identified with plus modes, We shall show this in more
detail through the use of our penumbral model.

3. l’he Penumbral Model

We now present the penumbral model to be used in our wave calculations. For our
purposes, a penum bral model consists of specified distributions of C2 , t ’ ,~, and H with
height :. To simplif y the calcula tions , we have chosen to represent the expected verti-
cal var iation of these parameters by piecewise linear functions. The specified forms
ofc 2 (:). t’~~(:), and H (z)are shown in Figure 2. The important features of the model
are as follows . The sound speed increases with depth into the convection zone from
a broad minimum in the penumbral photosphere and chromosphere. The Alfvén
ve locity increases rapidly with height due to the nearly exponential decrease Df
density while the magnetic field decreases nearly linearly. The density scale height
increases on either side of a minimum in the penumbral photosphere and low chromo-
sphere. The model thus reproduces the main expected features of vertical penumbral
structure. The numerical values of the parameters were chosen to represent a typical
penumbra.

The distribution of the sound speed was determined primarily from the expected
temperature distribution. Kjeldseth Moe and Maltby (1969) report that the tempera-
ture T in t~’~ penumbra may be obta ined by adding a constant A0=0.055 to the 0
va lues of the quiet photosphere. w here 0= 5040/ T. With this AU, the ca lculated relative
intensities averaged over the penumbral fine structure agreed well with observations.
Kjeldseth Moe and Maltby used the Bilderberg (‘ontinuum Atmosp here (Gingerich
and de Jager, 1968) for their quiet photospheric temperatures: here, we use the more
recent Harvard-Smithsonian Reference Atmosp here (HSRA , Gingerich et a!., 197 1) ,
Using the constant A0 =0.055, t he penumbral temperature minimum is found to be
3989 K, yielding a minimum value of the sound speed squared o f e 2 =43. 5 :m2 ~~‘2 ,

The slope of the linear increase of c2 into the convection zone was taken to be 0.1
km s 2 .  this choice is also based on the behavior of the HSRA. The distribution of
sound speed (in km s

_ I
) is given by

2 16 3 . 5 — 0 . I z  z~~ 200c (z) = 143 5 z>200 . 
(19)

At some point in the penumbral chromosphere the sound speed will increase rapidly
to coronal values. However , this increase takes place above the region where the
penumbral waves are trapped in our model , so we have not included this in the model.
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Fi g. 2. Distribution of c 2 , 1 4
2 , and H vvith height in the penumbral model (sot id tines ), The data

(crosses ) for n 4 2 are based on penumbral observations (see te~i). Data poinis for quiet pnoiosp ,c r c
values of c 2 and H, based on the HSRA , are shown only for comparison w t h  the penumcr.it model.

The distribution of c 2 is shown in Figure 2, a long with quiet atmospheric ‘.aliies ct ’ 2

from the HSRA (Nakagawa. 197 3) for comparison.
To determine the Alfvén velocity. sv’e assumed that the magnetic field strength

decreases linearly with height and is 1000 G at z=0. The rate of decrease of field
strength vvith height was taken to be 0.2 G km ’, in accordance vvith observations (s ee
Bray and Loughhead, 1964). The photosp heric densities were estimated from the
penumbral model of Makita (1963), t he only penumbral model to give densities. His
densities are consistent with more recent quiet photosp her ic models. The resulting
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va lues of i~ are plotted in Figure 2. The vertical distribution of these points was
approx imated in our model by two stra ight-line segments , w ith the upper segment
extrapo lated to greater heights. In the convection zone, the Alfvén velocity was
approx imated by another straight line segment which goes to zero at z= — 500 km.
due pr imarily to the increase in density with depth, but also to the fact that the penum-
bral field probably lies over the convection zone. The resulting distribution of the
Alfvén velocity (in km s~~) is given by

0 z < — 5 0 0

— 
25 + 0.05z — 500 ~ Z <0 

‘20)i4(4 — 25 + 0.I72z 0~~~:~~~400
94 + 0.75 (z—400 ) z >4 00 .

The distribution of the local density scale height H (in km) with height was chosen
to be

1 230 — 0.375z < 200
H ( )  1 155 200~~ z<400 (21)

l55 + 0.55 (z— 4 00 ) z~~ 400 .

In choosing values for H, we were guided by the following expression for the vertical
entropy gradient in the atmosphere:

ds OC .K ~~ 1 d t’ ,~

dz flT [(C
2 + 2~~ ff ~~~~~~dZ ( 2~~]~ 

(22)

w here c~ is the specific heat at constant volume, K is the isothermal compressibility.
and fi is the coefficient of thermal expansion. This relation follow’s from the hydro-
stat ic equation ( I)  and the basic thermodynamic relation

Td s =~~~
1’ (d p _ c l d Q) .  231

The distribution of H given in (2 1) is such that the entropy gradient d.v d: is negative in
the upper convection zone and positive in the penumbral photosphere and chromo-
sphere. The distribution of H is shown in Figure 2. a long w ith quiet atmospheric
va lues of H from the HSRA (Nakagawa . 1973) for comparison. Here ste can see the
effect of the supporting magnetic field : the scale height is greater in the penumor.i
than in the quiet atmosp here. The effect of the magnetic field increases as the lens~t~
decreases.

4. Trapping of Plus Modes in the Penumbral Photosphere

We now show that the running penumbral vv av es can be identified in our model w ith
‘ plus modes that are vertically trapped at photosp heric levels. The basic mechanism for

t he trapping is the refraction due to (i) the increasing Alfvén velocity w ith increasing
height in the photosphere-low chromosphere , and ( ii) the increasing sound speed st i th
dept h in the convection zone. We shall demonstrate the trapping mechanism in t w o
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ways: first, by considering the local dispersion relation (16) at three distinct levels in
the model penumbra (assuming locally constant parameters), and second, by con-
sidering the propagation equation (10) for the comp lete continuous penumbral
model (Figure 2).

4.1. THREE-LEVEL MODEL

A convenient method of looking at wave modes in our model is to draw diagnostic
diagrams such as Figure I for various heights in the atmosphere , assum ing locally
constant va lues of c2, v,~, and H — that is, ignoring the derivatives of these parameters
in Equation (3)—(5). Although only approx imate, this method does give some feeling
for the behavior of the wave modes. We shall draw diagnostic diagrams for three
different levels in our model penumbra ; one in the convection zone, one in the
photosphere, and one in the chromosphere. We may interpret these diagnostic

A N  lO~ 1km)

5 3 2 1 5
i) I

:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:

k~ x (km’1)
Fig. 3. Superimposed diagnostic diagrams for values of ~2 , V A ,  and H at three different levels in
the model penumbra : level, I z = -- 1400 km; level 2, = - 50 km; level 3, 500 km . The shaded
region is a region of vertical trapping of plus modes around level 2. The crosses correspond to

observed running penumbral waves (Giovane lli , 1974).
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diagrams more properl y’ as representing a three- layer model of the penumbra , w here
in eac h layer the parameters are constant. A middle layer of linite thick ness represent-
ing t he penumbral photosp here is hounded above and hel& ivt by semi-infinite layers
represent ing the penumbral chromosphere and convection zone , respect ively.

Figure 3 shovv s diagnostic diagrams for values of’ e 1. i’~ , and II at three difl’erent
levels in the penumbral model : — 1 400 km (layer I. eonv’ect ion Zone).  z = —5 0 km
(layer 2. penumbral photosphere) , and := 500 km (layer 3. penumbral chroniosphere .
The important feature of th is fi gure iv t he existence of the shaded region in vs hich the
plus modes are verticall y propagat ing in layer 2, hut are vert ical l y evanescent in
layers I and 3. These modes are thus trapped in layer 2. The plu’. mode diagnostIc
curve f’or layer 3 lies above that of layer 2 because of the higher Alfv ’én velocity in
layer 3. For higher levels in the ehromosp here . the plus mode curve for layer 3 w ill he
higher than that shovvn. The plus mode diagnostic curve f’or layer I has a lower cutoff
frequenc~ than layer 2 due to the larger scale height in the convection zone, hut lies
above the curve for layer 2 for higher values ofk 5 because of t he higher va lue of c 2 in
layer I. For deeper levels in the convection zone, the plus mode curve for layer I will
have an even lower cutoff frequency and a steeper slope. The existence of the region of
trapping in t he diagnostic diagram is a consequence of the qualitative features of our
model and is not dependent on the particular choice of numerical values.

There is no trapping of minus modes in Figure 3. All the minus modes propagating
in layer 2 are also propagating in layer 3. The minus mode curve for layer I has
van ished since the All ’~én velocity is zero and the atmosp here is convect iv’el y unstab le
at that level.

A lso shown in Figure 3 are f’our data points correspond ing to penumbral vvaves
observed in different sunspots by Giovanelli (1974) for vvhich he gives specific wave-
length and periods. These points tend to cluster in the long-wavelength end of the
shaded region of trapp ing of th~ plus modes. The one point which lies outside the
shaded reg ion does lie in the region of trapp ing if the parameter values in layer I are
chosen to represent a lower level in the convection zone. That is . a wave of this fre-
quency and wa ve length is reflected at a lower level in the convection zone in our
model. This data point is considered aty pical by Giovanelli , howe~er. The observation-
al data correspond to diflerent sunspots , no doubt hav ing different field strengths ,
w hereas the diagnostic curves are for a single choice of the model parameters. Never-
t heless, the resulting picture in Figure 3 c learly shows that the running penumbral
vvaves should be identified vv- ith plus modes vvhich are verticall y trapped at photo-
spheric levels in our model.

4.2. CoNTINuOUS MODEL

We now illustrate more accuratel y t he trapp ing of the penumbral w aves by’ making use
of our complete penumbral model (Figure 2) in conjunction with the propagation
equat ion (10). Roughly speaking, a vv av’e is vertically propagating when the function
f ( k 4, to; z)  (Equat ion ( I I ) )  is positive , and is verticall y evanescent when f is negativ-e.
In Figure 4 we have plottedfas a function ofz for our penumbral model ( Figure 2) for
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Fig. 4. The function f(k~. ~‘ :  :)evaluated for the penumbral model (Figure 2 1 ‘.~ith k~ = 2 .‘ t o ’
km ’ ~, (‘~ 3 V 10 5 2  ~~

a typ ical value of horizontal wavenumber (k ~= 2 x  l0~~ km~~ ) and frequency’
(w=3 x 10S.2 s~

t ) for penumbral waves. The function J ’(:)  is discontinuous due to
the discontinuities in the first deriv ’atives of the parameters c 2 , i-~ . and I-I in our model.
The general behav’ior off is that it is positive in a central region extend ing f’rni~
z~ — 1000 km to roughly z~~300 km, and negative above and below this region .

In the lowes t order W1(B approximation, t he genera) solution to (10) is given by

4 (z) = exp [± i f  .‘./.t dz] . (24)

lfJ’ is positive for 0< z < z0 and negat ive for z >z 0, then the solution for:> z0 which is
bounded as z—~ cc’ can be written as

~~(z) = e x P [± i f \ ”fd z _ 5 \ / _ f d:]. (25)

Thus, for z >z 0, the solution has the form of an exponential decay (with variable
exponent ial factor), and the wave may be characterized as evanescent in the vertical
direction. This analysis is somewhat crude, however, since the WKB solution (24) is
not accurate in the neighborhood of z0. The same analys is applies to the case wherc f
is positive for — z~<z<0 and negative for :< — :~~ . The wave then becomes evanes-
cent as z decreases below — z~ . Applying this to Figure 4. we conc lude that a wave
with the specified horizontal wavelength and frequency is trapped roughly’ in the

16

r,J

~

,I: ~~~~~~~~~~~~~~~ :‘~~~ -i ~~~~~~~~~~~~~~ , - —  

- - - - ‘V.-.-_ ’-———--.—-.-_ ,- ,



_ _ _ _ _ _  S.-

lii i NATURE OF RUNNINO PENUMBRAL wAv Es 4 11

central re~..n — l000<z<300 where f is positive. The exact location of the upper
boundary of’ t he trapping region is somewhat unclear due to the complicated dis-
cont inuous behavior ofJ’ t here. This is due to the piecevvise linear nature of our model;
w ith smoother distributions of c2 , i’~ , and H, the funct ion J would have a single,
smoot h zero crossing at some :>0.

We have been discussing the behavior of the function ~ ( z). Comparison with the
case of constant parameters shows that ~~l

2 is roughly proport ional to the kinetic
energy of vert ical motion of the wave (4 “.- ‘ t? w). Thus, it is the kinetic energy that is
trapped in the region of positive ,I The amplitude of the vertical velocity behaves
somew hat differently. From Equations (9) and (25) we have, for z> z0,

i~’ ( :)= ex~ [ ± i f J f d z + Q (z ) ] . (26)

where

Q( z ) _
~~5A d z — f ~~~_ f d z .  (27)

The function A (z) (Equation (7)) is negative over a range in z, and the function Q(z)
will remain positive over a range of z beyond z0 before becoming negative. Thus, the
vert ical velocity continues to increase above z0 before reaching a maximum at z=z 1,
where :i is determined from the relation Q(z t )=0. This can occur in sp ite of the
decreas ing energy above z=z 0 due to the rapid decrease in density.

By numer ically evaluating the integrals in (27), we have estimated the point z1 of
max imum vertical velocity in our model, again for the choice k~=2 x l0~~ km _ i and

x 10_2 s~~. The resulting value is z~ 1250 km. This is at a level where the wave
is evanescent , and is well into the region of formation of H~ (Vernazza et a!., 19 73).
Thus, although the trapped waves have their maximum energy at lower levels (:~~O)
w here the density is higher, the vertical velocity is greatest at chromosp heric levels
w here is it observed.

5. Discussion

An important conclusion that emerges from our model is that the running penumbral
waves are basically a photospheric phenomenon, even though they are observed at
chromospheric levels. This is really an expected result; the phase velocity of the
penumbral waves is typical of photospheric conditions rather than chromosp heric.
For examp le, the Alfvén velocity at H~ levels in the penumbra is far greater than the
phase velocity of the penumbral waves. In our picture, the waves are evanescent where
they are observed. That is, the observed vertical motions are a passive response to an
act ivel y propagat ing wave at lower levels. We have shown that although the energy is
trapped at photospheric levels , the vertical velocity reaches its maximum value at
levels of formation of Hz, cons istent with observations.
The concept of the penumbral waves as a photospheric phenomenon is also quite

I
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consistent wit h their expected source of excitation. ~v1oore ( 1973) has shown that the
likel y’ source of ’ excitat ion of the penumbral waves is oscillat ory conv e ct io n in a sub-
photosp heric layer in the umbra. l’he observation that the penumbral was cv dis-
appear suddenly at the boundary hetvveen the vv hite-light penumbra and the sur-
rounding photosphere also supports the phoio’.pheric nature of’ the w av es , In the
chromosp here, the penumbral libril structure extends outs’ . ard beyond this boundary .

‘rhe bas ic mechanism for the ver t ica l  trapp ing of the penumbral s s av c s  is not sensi-
t ive to the detai ls of our penum bral model. This mechanism is based primarily on the
Increase in the sound speed as v’ .e go dow n into the convect ion zone and the increase
I f l  the Alfvé n velocity as we go up into the chromosphere.These features are certain
to rema in in any improved penumbral model. Ohserv at ionally . t he insens itiS ity of the
basic mechanism is confirmed by the fact that penumbral vs ay es are seen in almost
ever y stable , regular sunspot (Zirin and Stein. 1972) .

The character of the trapped plus modes is different at different heights The svave is
more nearl y acoustic at low levels (convection zone), but is more nearly Alfvénic at
higher levels (p hotosp here and Iosv chrotliosp herel. The effect of strat ification and
grav ity. v’.hile not doti’inant. is felt throughout the trapping region.

Althoug h we have not attempted to calculate them , t here are certainl y’ resonant
modes in our mode l which arise l’rom the construct ive interference of plus modes
reflected from above and below in the trapping region. The resonant dispersion curves
w ou ld lie in the shaded region in Figure 3. Hovsev-er. s ince the penumbral w a ves are a
somewhat trans itory phenomenon . there is no reason to associate them specifically’
w ith such a resonant mode: it is sufficient that a wa v e of the proper frequency and
horizontal vvavelength be verticall y trapped.

Since our penumbral i’iiodel is horizontall y’ uniform, it cannot account for any
observed horizontal (radial) variations in the penumbral waves. We can roughly
account for the radial geome%r\ of’ the penumbra by noting that the energy in a verti-
ca lly trapped wave w ill decrease as I - ‘ r , vv here r is radius measured from the spot
center , as the wave propagates radiall y outvvar d. This accounts at least in part for the
observed decrease in wave amp litude with radius. The sudden disappearance of the
waves at t he outer edge of the penumbra is associated with the more fundamental
problem of the basic existence of the sharp boundary’ between the white-light penum-
bra and t he surrounding photosphere.

Finally, we should note that our assumption of adiabatic perturbations is invalid
over a limited range of height in the low photosp here, say’ t he first few- hundred
kilometers abov’e :=0. Here one should account for the rapid radiative exchange. The
main effect of the radiative transfer on the plus modes is to effectively’ replace the
adiabatic sound speed in this limited region by something nearer to the isothermal
sound speed. The overall effect on the trapped plus modes discussed here will be quite
small , even quant itativel y.
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Convective instabilit y in the presence of a nonuniform
horizontal magnetic field
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Newcomb ’ s criterion for convective stab i lity in the presence of a horizontal magnetic field is wr itten
in a form which exp licitly shows the effect of vertical variations of the magnetic field strength. It is
shown that a nonuniform horizontal magnetic field can be destabil iz i ng as well as siabilizing.

We consider the convective instability of a compres- Using the equation of hydrostatic equilibrium,
sible, inviscid, perfectly conducting gas permeated by d 1  B2 ’1a horizontal magnetic fietd B= [B(z), 0, 0] that may vary ~— (

5 p÷1- 1= —~~~~~~, 
(2)

with height z , under a uniform gravitational accelera-
tion g (in the negative z direction), assuming adiabatic and the equation of state of a perfect gas , p = p R T , the

perturbations. The first complete treatment of this stability criterion (1) can be written in the form
pr oblem was given by Newcombt using the energy inte- dT dT 1 d B2”

1dz ~ (dz ) .  
—

~~~~~~
gral method. He showed that a necessary and sufficient >

condition for stability is given by
where (dT/ dz ) 5 = — g /c~ = — g (~ — 1)/ y R is the adiabatic

(I) temperature gradient. The new form (3) of the stability
dz VP criterion has an advantage over the form (1) in that it

shows expl icit l y the effect of vertical variations of thewhere p is mass density, p is pressure , and y is the
ratio of specific heats. In the case of instability, the magnetic field, since the temperature distribution is

most unstable mode has the form of an interchange of ii-idependent of the magnetic field. For a uniform mag-
netic field (B= const), (3) reduces tolong but finite segments of magnetic field lines . The

stability criterion (1) was also derived by Yu2 by con- dT (d T\
sidering the force balance on a displaced magnetic flux a— — >0,z dz 3tube.

which is identical to the Schwarzschild criterion in the
Newcomb noted that the critical density gradient on absence of a magnetic field. [Note that usually, e.g.,

the right-hand side of (1) is, at least explicitly, inde- in a star , dT/ dz and (dT/ d z ) 5 are both negative. ] Thus,
pendent of the magnetic field, and is, in fact , that given a uniform horizontal magnetic field has no effect on the
by the Schwarzschild criterion3 in the absence of a mag- condition for the onset of convective instability, al-
netic field. However, in the case of a nonuniform hori-
zontal magnetic field (for which Newcomb’s analysis is 

though, as Newcomb’ also showed, it does have an ef-
fect on the growth rates of unstable modes.

valid), the static distribution of pressure and density is
affected by the magnetic field, and thus the stability If , however , the magnetic field is nonuniform, then
criterion (1) depends implicitly on the magnetic field. (3) shows that the field can be stabilizing (in the case
This point, which was overlooked by Newcomb, will be dB/dz >0) or destabilizing (dB/ dz <0). A field that in-
pursued here, creases wit h hei ght (dB/ dz >0) can stabilize the atnso-

490 The Physics of Fluids . Vol l b. No, 4 , April 1 97E Copyrig ht C’ 1975 American Inst itute of Physics 490
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sphere In the presence of a superadlabatic temperature 4 2~ - i~ (7)
gradient. When the field decreases with height (d B/dz
=0), the critical temperature gradient is i-educed be 

where c = (y R T) ’ ’2  is the adiabatic sound speed. This
low the adiabatic gradient . stability criterion was obtained for this special case by

As an illustration of the destabilizing effect for dB/ yut from a normal mode analysis. Parker6 has studied
lz <0 , conside r the case of an isothermal atnsosp here , this case , including the effect of cosmic-ray pressure ,
which is convectively stable in the absence of a mug- in connection with the gaseous disk of the galaxy .
netic field. The stability criterion (3) reduces to The destabilizing effect of a nonuniform magnetic

field with dB/dz <0 is similar to the phenomenon ofi d f B 2\ —
— (~) =g(L;~ ) 

. (4) “magnetic buoyancy” analyzed by Parker 7 and by Weiss. 8
~ c!z~ 8r) < R 

Magnetic buoyancy is attributed to an isolated tube of
If the magnetic pressure decreases more rapidly with magnetic flux in thermal equilibrium with its nonmag-

netic surroundings. The instability discussed here isheight than the critical rate 
due to the buoyancy of an arbitrary tube of flux within
a smoothly varying magnetic field.r d I B a\

~1
~~~~~ —

~
(
~~
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ABSTRACT

The linearized theory of magneto—atmospheric waves (involving

the comb ined  res tor in g force s due to buoyancy,  compres si b i l ity ,

and magnetic field) is developed for the case of a horizontal

magnetic field. A general propagation equation is derived for

adiabatic perturbations with arbitrary vertical distributions of

the sound speed c , A l f v~ n velocity VA ? and local dens i ty  scale

height H. An exact anal ytical solut ion to the propa gation

equa tion is ob tained for  the case of an iso thermal  a tmosphere

permeated by a u n i f o r m  hor izon tal magnet ic  f i e ld , withou t m aking

the usual short-wavelength assumption. This solution is applied

to an idealized model of the low-corona-chromosphere transition

region for comparison with observations of flare-induced coronal

waves. The results show that disturbances may propagate horizon-

tally in the low corona in a wave guide formed by the sudden

density increase into the chromosphere below and by the rapidly

increasing Alfvén velocity with height in the corona . The group

velocity of the guided wave modes is nearly independent of wave-

length , so that a disturbance propagates as a compact wave packet.
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I. INTRODUCTION

The theory of waves in a compressible , stratified ,

electrically-conducting atmosphere permeated by a magnetic

field is of considerable importance in astrophysics , especially

in solar physics where there is a wealth of detailed observations

of such waves in the solar atmosphere. Following Yu (1965), we

shall refer to waves which involve compressibility, buoyancy,

and magnetic forces as magneto—atmos~~eric waves. Among the

many solar phenomena that are seemingly attributable to magneto-

atmospheric waves are the heating of the corona and of chromo—

spheric plages , the five-minute oscillations in active regions ,

oscillations in sunspot umbrae and penumbrae , and flare—induced

coronal disturbances.

The theory of magneto—atmospheric waves is complicated by the

anisotropic nature of the medium ; the gravitational field and

the magnetic field each introduce preferred directions. Addition-

ally, the disturbance is subjected to the combined restoring

forces due to compressibility, buoyancy, and the magnetic field ,

so that pure wave modes (i.e., acoustic , Alfvén , and gravity)

exist only as special cases. In genera l , magneto—atmospheric

waves involve the effects of all three restoring forces. The

problem is compounded by the fact that the basic parameters

describing wave propagation in the solar atmosphere (the sound

speed c, the Alfvén velocity VA , and the local density scale height

H) are , in general , functions of heig ht , and therefore the
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disturbance cannot be represented by plane waves propagating

in the atmosphere.

Previously, the problem of magneto-atmospheric waves has

been studied by either of two basic approaches , each yielding

a dispersion relation based on constant values of the atmospheric

parameters. The first approach has been to assume that the

vertical extent of the disturbance is much less than the smallest

scale height for variation of the atmospheric parameters. The

parameters can then be taken as constant locally. McLellan and

Winterberg (1968) studied an isothermal atmosphere permeated by

a uniform magnetic field with arbitrary orientation. Then ,

assuming that the Alfvén velocity is constant locally (although

it actually increases exponentially with height), they derived

a local dispersion relation that is valid for short wavelengths

(short compared to the density scale height) . This local dis-

persion relation has been studied by several authors (Bel and

Mein 1971; Michalitsanos 1973; Nakagawa , Priest , and Welick

1973) to determine the effects of different propagation direc-

tions and magnetic field orientations.

The second basic approach has been to investigate an iso-

thermal atmosphere permeated by a horizontal magnetic field that

decreases exponentially with height such that the Alfvén velocity

is constant, as are the sound speed and the density scale height .

Yu (1965) derived the dispersion relation which in this case is

valid for all wavelengths . He evaluated the three modes of

propagation for various angles between the wave propagation vector

25
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and the magnetic field. Chen and Lykoudis (1972) used the

dispersion relation of Yu to study the five-minute oscilla-

tions in plage regions. Nye and Thomas (l974a) used Yu ’s

dispersion relation in connection with a multi—layer model

for running penumbral waves.

We consider only plane parallel atmospheres , with no

horizontal variation , in order to permit Fourier decomposition

in the horizontal directions as well as time . With variations

in the z—direction only, the governing partial differential

equations reduce to ordinary differential equations. There

are only two magnetic field configurations consistent with

static equilibrium and no horizontal variation. They are

B constant and B (B
~~
(z)e B

~~
(z)i O). We shall restrict our

study to the case of a unidirectional horizontal magnetic field

that may vary with height. We shall not follow either of the

two basic approaches discussed above, however , due to the

inherent limitations of each of them for solar applications.

The length scale for magnetic field changes in the solar atmo-

sphere is generally much greater than the density scale height ,

so that the assumption of constant Alfvén velocity is not

justified . On the other hand , the length scale of observed

disturbances in the solar atmosphere is not generally small corn-

pared to the density scale height. This is especially true in

the photosphere where the density scale height may be smaller

than 100 km , and hence smaller than the limit of observational.

resolution.

26
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In section II we derive a general propagation equation

for an arbitrary direction of propagation and arbitrary

vertical variations of the atmospheric parameters. For the

case of an isothermal atmosphere permeated by a uniform hori-

zontal magnetic field , the Alfvén velocity increases exponen—

tially with height. In section III we obtain an exact general

solution of the propagation equation in this case. We compute

eigenmodes for the case of a rigid lower boundary in section IV ,

and apply this to a specific solar wave phenomenon , the flare-

induced coronal waves , in section V.

The analytical treatment in sections II and III also forms

the basis of a following paper in which we deal with running

penumbral waves.

II. BASIC EQUATIONS

The atmosphere is assumed to be a compressible , inviscid ,

perfectly conducting gas under a uniform acceleration of

gravity g (~ 0.274 km sec
’2 ) in the negative z—direction. The

undisturbed magnetic field is taken in the x-direction and may

vary with heightz; i.e., B 0 = (30(z),O ,O) . The undisturbed

pressure , density, and temperature may all be functions of

height z , and are denoted by p0 (z), p0 (z), and T0(z), respectively.

We shall see that wave propagation in the basic atmosphere may be

completely characterized by the vertical variation of the sound

speed c(z), the Alfvén velocity VA (z), and the local density
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scale height H (z), defined by

a B 2
E (. 1) , V~~~ 411 p 0  ‘ H 

— 

~~ ii ” (1)

The unperturbed atmosphere is taken to be in static

equilibrium :

B 2
0 — 2Po ~~~~~ 

— -p0g

If the magnetic field is a function of height z, then it has a

role in the basic equilibrium of the atmosphere. We consider

only stable atmospheres , which requires that

dT 0 — 
dT 0 > 

1 ci (
B o )

where (dTo/dz)5 is the adiabatic 
temperature gradient and R is

the gas constant (see Thomas and Nye (1975) for a recent

discussion).

Consider small adiabatic perturbations of the equilibrium

atmosphere , letting p, p, u ,  and B denote the perturbations in

pressure, density , velocity , and magnetic field , respectively .

Then, the basic linearized equations of continuity , momentum ,

energy , and induction are

+ V • (po u) = 0 , (3)

‘I+ Vp — pg —~~~~(VxBo)xB + (‘7xB)xB 0~ = 0, (4)

+ u~~ P o = c2 [~~~ + U~~V P o ]  , (5)
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— V x ( u x B ~~) = 0 . (6)

After taking the time derivative of the momentum equation

(4), we may eliminate the perturbation quantities p, p , and B

by using equations (3), (5), and (6). This leaves a single

. vector equation for the velocity perturbation U = (u,v ,w):

a
2 u 

~ . 
dB~~ I

Do ~~~~~~~ 
+ V 

1
pow[g + 

8TrPo d2 
— c2 p 0 V •u +

+ ~~(u•V)p0 +p oV ~~u~ g 
- ~ -~ (VxB 0)x[Vx(uxBo)] -

( 7 )

— B0x(Vx[Vx(uxB0))) = 0

Next, we assume that the perturbation velocity has the form

U = exp i(k •r-ut) , with i~I = Q ( z )  = (~~(z~~,~~(z),i~(z)) and

= k,~x + ~~~~ Then , using the definition of VA
2
~ 

the three

components of the momentum equation (7) become

(L
~
2-c 2k

~
2 )ii - c 2k

~
k
~~ 

- ik~~(g_c 2~~~)~~ = 0 , (8)

- c2k
~
k
~~ 

+ [
~~

2_C 2ky
2_V

A
2 (kx

2+ky
2 )]V - ik~~(g -

— (c2+vA
2)a~.]w = 0 ,

and

~~~~~~~ 
- + g + c 2

a~j.~~ 
4 ik~~~~~.(c

2 + V
A
2)

(c2 +v 2
) d d 2’

— 
A + q + (c 2 + v

A
2)~~~

.
~~ + (c 2 + v

A
2 )~~~~ +

(c 2 +v 2
)

+ ~~~(c 2 + V
A

2 ) - 
A + (w 2 v k ) w  = 0 . (10)
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These are the linearized perturbation equations. They give

important information about particle motions for various

modes of propagation in the atmosphere .

The horizontal components of the perturbation velocity

can be eliminated from the system of equations (8) — (10) to

yield a single equation for the vertical velocity w. The

resulting equation is

+ A(z) + 3(z) ~ 0 , (11)

where the coefficients A(z) and 3(z) are given by

2 d 2
A(z) = - + ~ _. (w 2 _v 2 k 2

) 
~~~~ 

+ 
5

[-~w ” +

k dv 2

+ (w 2—c 2k 2) (ui 2—vA
2k 2 ) (3, + ~~ — ) ] - ~

_
~ (12)

and

3 ( z )  = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- g(k~+k~,) (g T’~ 
+ ~~ V~~k

2
1w

2 v~k~~(k~+k~,) [c
2v~k,~ -

2

- g(g -~~—)] 
- a (w 2 _v~~k 2 ) 2 w 2 (k 2 +k 2 )~~~ ._ — ~ -k~g-~-~ . (13)

Here , D and E are given by

D (w 2_v
A
2kX

2)[
~~

2 (c 2+vA
2 )_c 2vA

2kX
2] (14)

and

E w 4_ (k
X
2+kY

2)[w 2 (c 2+vA
2 )_c 2vA

2kX
2 l . (15)
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Equation (11) is a general equation for the vertical component

of velocity for a perturbation propagating in an arbitrary

direction , in an atmosphere with a horizontal magnetic field

. and arbitrary vertical distributions of 0 2 , V A
2 , and U. Th.~.s

propagation equation has been given previously (Nye and Thomas

1974a’) in the case k = 0.y

III. ISOTHERMAL ATMOSPHERE WITH A UNIFORM

HORIZONTAL MAGNETIC FIELD

Now consider the case where the undisturbed temperature

and magnetic field are constant with height . Since the magnetic

field is uniform , it has no effect on the hydrostatic equil ibr ium

of the atmosphere , and the equilibrium pressure and density both

decrease exponentially with height. The sound speed and the

density scale height are both constant , with values determined

by the temperature of the atmosphere. ¶1~he Alfvén velocity

increases exponentially with height due to the decreasing

density. The sound speed , density scale height, density, and

Alfvén velocity are given by - 
-

c = (yRT0)~ = const. , (16)

RT
H = -.

~~~~~
- const.  , (17)

- z/Hp0 (z) poo e , ( 18)

and
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vA ( z )  = v o eZ/ 2H (1 9)

where ç~~ and v 0 are the values of the undisturbed density and

Alfvén  velocity at z = 0.

The riondimensional parameter 8 2 vo2 /c 2 is introduced as

a measure of the relative importance of the restoring forces

due to the magnetic field and to compressibility at the point

z = 0. For values of 82 < 1, there is a region of the atmosphere

above z = 0 where compressibi l i ty has more importance as a

restoring force than does the magnetic force , but in any case

the magnetic field always becomes dominant as z becomes large.

In the remainder of this paper we shall consider only waves

whose horizontal component of propagation is parallel to the

magnetic field (k~ = 0) . Using (16) — (19) , we may write (11) as

1c 2 w 2 + ( w 2 _ c 2 k 2 )v 2 eZ/ hh
J~~.~~~ - 

c 2 w 2 d~ +

+ [(~j2-c 2k~) (w
2_v~e

Z/Hk 2 )_g(g -~~~)k~ ]~ = 0 . (20)

We de f ine  the nondimensional  f r equency  S~ and the non-d imens iona l

horizontal wavenumber K by

E , K Hk~ (21)

By transforming the dependent and independent variables according

to

W — 
-. zK/H — _________  

-z / !-i
— we x — 

8~ (K ~—c~
2) e
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we may put equation (20) in the dimensionless form

x (1—x)~ ,~~ + [C— (A+B+l)x)~~~ 
- ABW 0 ( 2 3 )

wi th

A + B = C = 2K + 1 , AB ~~ + 1< + (~~i.)~~ (24)

Equation (23) is the standard form of the hypergeometric

differential equation) The solutions of this equation may be

expressed in terms of hypergeometric functions , given for

~x I 
< 1 by

F ( A ,B;C;x) = rj A ) r cB )  f l~ o 
r ( A + n ) r ( B + n )  ~~~~~- . (25)

The general solution of equation (23) may be written , for

l x i < 1, in terms of the original variables z and ~ (z) as

~~(z) = D1 e 
/1iF(A B;C;~~~~~~ e )  +

(26)

+ Dze
z
~~

H
E 8

2 
~;~~

2)
1

2K
F(A_c+l ,B_C+l ;2_C ;82 (K~~~~2) e

/H ) ,

where D1 and D 2 are arbitrary constants.

IV. EIGENMODES FOR A RIGID LOWER BOUNDARY

We now examine modes of propagation in the relatively simple

1The hypergeometric nature of the wave equation in this case was
noted by us earlier (Nye and Thomas 1974b) , and also independently
by Adam ( 1 9 7 4 ) .
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case of an isothermal atmosphere with a uniform horizontal

magnetic field , bounded from below by a rigid wall at z = 0.

The general solution (26) is subject to boundary conditions

at z = 0 (x = ~ 2/B 2 (K 2—~~
2)) and at z = (x = 0).

As a condition at z = ~~~, we require that the total energy

of the perturbation be integrable over 0 < z < ~~~~. The magnetic

energy of the perturbation is proportional to the square of

the velocity . Since

u r n  F(ci,8;y;x) = 1 , (27)
x-~0

we see from (26) that we must take D2 = 0.

The second boundary condition is that the vertical velocity

vanish at the rigid wall , i.e., ~ = 0 at z = 0, i.e., at

x = c22/ 8 2 (K2—~3
2). Provided

82 (K2-~~
2) 

< 1 , (28)

we may apply this condition directly to (26) with D2 = 0 to

obtain the dispersion Lelation

F(A l B;C; 8T(K~~~ 2)) 0 , (29)

If, however , (28) is not satisfied , then other representations

of the general solution (26), valid for l x i > 1 must be used in

order to apply the boundary condition at z = 0. For

B 2 ( K 2 _ ~3 2 )  > 1 , ( 3 0 )
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the interval 0 < x < Q 2/82 (K2—c~
2) contains the regular singular

point at x = 1, and no solution that satisfies the boundary

conditions and is also regular at x = 1 is to be expected .

For the range

_________  — 1 , (31)

we may use analytic continuation to extend the general

solution (26). The analytic continuation of (26) with D2 = 0,

valid for x < - 1, is given by

— —zK/HIr (C)r (s—A ) 82 (c2 2—K 2) A zA/H 
~w(z) — 1 e [r(B)]2 ~~~~ 

] e

x F(A ,l-B;1—B+A ;8 ~~~~~~~~~ ez~
F
~) + 

r (~ )r(A—B) 
~

x [ 8 
~] e F(B l—A~l A+B •8~~~~~~~~ e

2
~
’
~ )~ . (32)

Thus, for the range of parameters (31), the dispersion relation

is given by

[ r ( B ) J 2  F ] F(A B B+A; ) +

1’ A—B’ ° 2 ( c ~
2 —K 2 ) B 

82 (K2—~
2)

+ fl~(A) 12 [P  ] F(B ,1—A;l—A+B ; ) = 0 . (33)

The dispersion relation (equation (29) or (33)) has been

evaluated for various values of the nondimensional parameter

8
2

. Examples are plotted in figures 1 and 2 (also see figure 4).

The curves in these figures represent well-defined eigenmodes

of wave propagation in the atmosphere. These curves represent
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trapped waves propagating horizontally in the waveguide formed

by the solid boundary below and the exponentially increasing

Alfvén velocity above.

There are several ways of interpreting the effect of

chang ing 8
2 on the dispersion relation. First , different

values of 8
2 can be taken to represent the same magnetic field

strength and the same density at z = 0, but different atmospheric

temperatures. A second interpretation is that different values

of 8
2 represent the same magnetic field strength and the same

temperature , but different densities. This is equivalent to

placing the solid lower boundary at successively higher levels

in the atmosphere corresponding to larger values of 8
2 . At

each higher level the magnetic restoring force becomes more

important due to the decreased density , while the compressible

restoring force remains the same.

The third interpretation is to consider changes in 8
2 to

be due to changes in the magnetic field strength , with fixed

values of temperature and density . Since the sound speed and

the density scale height then do not change , the scales for the

frequency and horizontal wavenumber are the same in each case

and the dispersion diagrams can be compared directly. From

figures 1 and 2 it can be seen that increasing the magnetic field

strength (increasing 82) increases the cutoff frequency. As

82 increases , the slope of the dispersion curves , and hence the

group veloc ity, also increases.

Lowering the value of y to represent crudely the effect of
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radiative transfer has little effect on the nondirnensional

dispersion diagrams. However , the frequency scaling depends

on y as ~~ - ~~~~~ while the wavenumber scaling is independent

of y. Therefore , for lower y (lower sound speed) the wave

oscillates less rapidly and the phase and group velocities are

correspondingly lower .

The vertical velocity of the disturbance (equation (26) or

(32)) can be calculated as a function of height for any point

on a dispersion curve. Figure 3 compares the lowest mode of

oscillation for the same horizontal wavenumber but different

values of 8
2 (i.e., different magnetic field strengths) , and

shows that for increasing magnetic field strength , the wave

oscillates more rapidly and is trapped at lower levels in the

atmosphere . We now discuss the elgenmodes given by the dispersion

relation (29) or (33) in relation to an observed solar

oscillation.

V. APPLICATION TO FLARE-INDUCED CORONAL WAVE S

On September 20 , 1963 , Moreton and Ramsey (Moreton 1965)

observed a chromospheric disturbance , apparently caused by the

flash phase of a flare , propagate at a nearly constant velocity

of 750 km s ” for several hundred thousand kilometers across

the solar disk. Many other flare-induced disturbances have

been reported (Moreton 1960, Athay and Moreton 1961 , Dodson and

Hedeman 1968) an~ the propagation velocity is usually on the order
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of 1000 km s~~ . Dodson and Hedeman (1968) report that the

width of the disturbance created by the proton flare of

August 28, 1966 was greater than 100,000 km .

These disturbances could not have been propagating solely

in the chromosphere , since in the chromosphere the sound speed

is only of the order of 20 km s~~’ and the Alfvén velocity is

only of the order of 50 km ~~~ Thus a purely chromospheric

disturbance would have created a shock wave and been rapidly

dissipated . In the corona , however , both the Alfvén velocity and

the sound speed are an order of magnitude higher than in the

chromosphere due to the increased temperature and decreased

density . It has been proposed (Meyer 1968; Uchida 1968, 1970,

1974; Uchida et al. 1973) that the disturbance is a magneto-

hydrodynamic wave propagating in the low corona and that the

motion of this wave at the corona-chromosphere transition region

is what is actually observed . There is , however , no general

agreement as to the wavelength of the disturbance or even whether

the observed disturbance is a single wave or a wave packet.

Meyer (1968) studied the propagation of the magneto-acoustic

fast mode in an isothermal corona permeated by a uniform

vertical magnetic field , with a rigid lower boundary representing

the chromosphere-corona transition region. He found eigenmodes

with nearly constant horizontal group velocity . Equating the

group velocity to the observed propaç’ation velocity , Meyer

found that for a horizontal wavelength on the order of 100 ,000 km ,

the coronal magnetic field must be approximately 6 gauss , a
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reasonable average value.

rJchida , in a series of papers (richida 1968, 1970, 1974;

Uchida et. al. 1973), studied the propagation of short wave-

length (~ 5000 km) disturbances in various realistic coronal

models. Using a ray-tracing technique , he obtained horizontal

and vertical refractions in close agreement with the observed

waves.

Although the magnetic field structure of the corona is

quite complicated , the field changes fairly slowly and there

are probably regions of nearly uniform field with almost any

orientation. We study the case of a uniform horizontal field

in connection with the coronal wave prob lem only as a means of

understanding the mechanism of wave propagation for waves of

arbitrary wavelength . Our model supplements Meyer ’s (1968) work

by considering the case of a uniform horizontal magnetic field ,

and by including effects of gravity and stratification. As in

Meyer ’s model , we use the rig id lower boundary to represent

upward reflection from the chromosphere-corona transition layer .

We have evaluated our solution for a temperature of

1.6 x 106 °K and 8
2 = 10, which is fairly typical of the base

of the corona. These values correspond to a sound speed of

180 km s ’ and a density scale height of approximately 71,000 km.

Figure 4 shows the dimensional dispersion relation for these

parameters. We see that the dispersion curves are nearly straight ,

which means that these modes have very little dispersion and will

propagate for great distances with little change in character .
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The first three modes have been calculated for a wavelength

of 75,000 km in figure 5. The first mode has nearly zero

vertical velocity above two scale heights and is therefore

trapped in the low corona .

The phase velocity and group velocity of the first mode

have been plotted as a function of horizontal wavenumber in

figure 6. For any wavelength of 100,000 km or less, the

group velocity is nearly constant at about 610 km s~~ . Since

the energy of a disturbance propagates at the group velocity ,

it is not important which specific wavelength, or spectrum

of wavelengths , receives energy from the flare. The energy

at all wavelengths will propagate together as a wave packet

near the lower coronal boundary .

The present model is not proposed as a realistic model of

the solar corona , although it may be fairly accurate over

certain regions. No attempt has been made to include the

effects of horizontal variations. The value of the model is

that a mechanism for wave propagation can be studied for

arbitrary wavelengths . These results close the gap between

the short wavelength ray—tracing theory and the long wavelength ,

vertical field case. We show that the question of wavelength

is not particularly important since the group velocity of the

trapped modes is essentially independent of wavelength. For the

relatively large value of 8
2 (=10), the wave modes are basically

the magneto—acoustic fast modes (studied by Meyer and by Uchida)

modified by gravity . For an inclined magnetic field , there must
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also be trapped modes of propagation involving a coupling of

the present modes and the type of mode studied by Meyer for a

vertical field. The present results , taken with those of

Meyer and the work of Uchida , present a consistent picture of

flare-induced coronal waves as guided magneto—atmospheric

waves.
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FIGURE CAPTIONS

Fig. 1 Dispersion diagrams (nondimensional frequency versus

nondimensional horizontal waveriumber) for an isotherma l

atmosphere with a uniform horizontal magnetic field

and a solid lower boundary , with -y = 5/3, 8
2 =

and 82 = 10
_ i
. The curves represent eigenmodes and the

crosses indicate the computed points. This figure

should not be confused with a diagnostic diagram for an

atmosphere with constant parameters (e.g., Yu 1965).

Fig. 2 Same as Fig . 1, but with 8
2 = 0.5.

Fig. 3 Direct comparison of the first mode of oscillation

of the atmosphere for the same nondimensional horizontal

wavenumber (K = 0.25) but for two values of 8
2

( 8 2 = l0~~ , 8 2 = 10 ’).

Fig . 4 Dimensional dispersion diagram for 8
2 = 10, y = 5/3,

and T = 1.6 x l06°K. The curves represent eigenmodes

of the corona which are trapped by the increasing

Alfvén velocity with height.

Fig . 5 First three modes of oscillation of the model corona

for 8 2 = 10, y = 5/3. The vertical velocities have

been normalized to maximum value unity.

Fig. 6 Phase velocity V
P 

and group velocity Vg of the f i r s t

mode of coronal osc ill ation p lotted as a function of

horizontal wavenumber.
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ABSTRACT

A simple two-layer model of a sunspot penumbra is used

to study the mode of running penumbral waves. Exact solutions

of the .linearized wave equation , not limited to the small-

wavelength approximation , are employed in each layer. The

lowest “plus” eigenmode of magneto-atmospheric waves in the

model penumbra is in good agreement with observations of

running penumbral waves. The results indicate that running

penumbral waves should be observable in a photospheric spectral

line.
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I .  INTR ODUCT ION

In Paper I of this series (Nye and Thomas 1975) we

presented an exact analytical solution for magneto—atmospheric

waves in the case of an isothermal atmosphere with a uniform

horizontal magnetic field . In the present paper we apply this

solution to a simple two—layer model penumbra in order to study

the mode of running penumbral waves.

Running penumbral waves (Zirin and Stein 1972; Giovanelli

1972 , 1974; Moore and Tang 1975) are good examples of magneto-

atmospheric waves. These waves propagate radially outward

across sunspot penurnbrae , with predominantly vertical motions

in Hc~. The observed range of frequency and propagation speed

is fairly well established (see discussion in section I’~’)

Moore (1973) has concluded that the source cf excita~ ion of

the penumbral waves is overstable convection in the low umbra.

In an earlier paper (Nye and Thomas 1974 (NT)) we studied the

mode of propagation of penumbral waves on the basis of a piece—

wise linear model of the vertical structure of a typical sur~spot

penumbra . We found the penumbral waves to be magneto—atmospheric

waves (of the “p lus ” type) that are vertically trapped at photo—

spheric levels. This trapp ing is primarily due to the increasing

sound speed with depth into the convection zone and the increasing

Alfvén velocity with height into the chromosphere.

Here we extend our earlier work by computing actual eigen-

modes of propagation for a somewhat simpler model penumbra , which
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nevertheless retains the essential features. The properties of

the lowest mode of propagation of the model penumbra turn out

to be in good agreement with observations , and give some useful

clues for further observation of running penumbral waves.

II. THE TWO-LAYER PENUMBRAL MODEL

The entire penumbral model consists of a compressible ,

iriviscid , perfectly—conducting , stratified perfect gas subject

to a constant acceleration of gravity g (~ 0.274 kin s 2) in the

negative z-direction. The upper layer is isothermal and is

permeated by a uniform horizontal magnetic field , which yields

an Alfvén velocity that increases exponentially with height due

to the decreasing density . An exact solution of the linearized

propagation equation for this case was given in Paper I.

This upper layer is a suitable model of the penumbral photo-

sphere and chromosphere , where observed penumbral magnetic fields

are very nearly horizontal (Nishi and Makita 1973) and decrease

slowly with height (Bray and Loughhead 1964). The scale height

for variation of the magnetic field is very large compared to

the density scale height , so the assumption of a uniform horizontal

magnetic field is reasonable. Our earlier calculations (NT) showed

that running penumbral waves are trapped at photospheric levels ,

so that the increasing sound speed in the upper chromosphere has

little effect on the trapping . Taking the upper layer to be iso-

thermal is therefore also a reasonable assumption .
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The vertical distributions of the sound speed and Alfvén

velocity for the two-layer model penumbra are shown in Figure 1.

Subscripts 1 and 2 denote quantities in the upper and lower

layers, respectively , and the subscript 0 refers to quantities

evaluated at z = 0. The sound speed , density scale height , and

A1fv~n velocity in the upper layer are given by

c~ = 1 RT 1 = const. , (1)

H1 = 
~~~~~~~~~ 

= const. (2)

and

v~~(z) = v
2
e~~

’lh (3)

The lower layer of the penumbral model (layer 2, figure 1)

is adiabatic with no magnetic field. The temperature decreases

with height (increases with depth) at the adiabatic lapse rate ,

(dT/dz)5 = —g/c~ , and thus this layer is neutrally stable. The

actual temperature distribution in the convection zone below a

penumbra is probably very nearly adiabatic , except for a thin

superadiabatic layer just beneath the photosphere that we

neglect here. There is no magnetic field in this layer since

we assume that the penumbral magnetic field lies over the con-

vection zone. The sound speed squared and local density scale

height each increase linearly with depth in the lower layer,

their functional form s being

2 2
c 2 (z )  = c 2 0  

— g(y2—l)z (4)

and
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H 2 (z) = H 2 0  
— (y 2 —l)z . ( 5 )

The corresponding density distribution is

p 2 (z) = p 2 0 [l - (y —l)z/H ~1 y 2 fl (6)

At the interface between the two layers (z=0) , we require

the undisturbed density to be continuous to avoid introducing

interfacial gravity wavos and wave, reflections ; therefore ,

= p
2 0 . In the unperturbed penumbra , there must be pressure

equilibrium at the interface ; that is , the gas pressure in the

lower layer at z=0 must equal the sum of the gas pressure and

the magnetic pressure in the upper layer at z=0. Therefore ,

the gas pressure is greater in layer 2 than in layer 1, and

since the density is continuous across the interface , the tem-

perature is greater in layer 2. This may be expressed in terms

of the sound speeds and the Alfvén velocity at z 0  as

2 _ 12 2 +
Y2 2 7c 2 0 — c1 -~-v 0

We now turn to the problem of computing eigenmodes of

magneto-atmospheric waves in this penumbral model .

III. ANALYSIS

Consider first the behavior of small adiabatic perturbations

in the lower layer (layer 2), an adiabatic atmosphere without

magnetic field . Leibacher (1971) solved this problem in his study

55



_ _ _ _ _ _ _ _ _ _ _ _ _ _

of oscillations of the quiet photosphere. Here we take a

slightly different approach than his , using other transformations

which yield a different form of the propagation equation. For

vanishing magnetic field (B0 = B = 0), the vector equation for

the perturbation velocity (equation (7), Paper I) becomes

~ 
2u

= c~ V~ + (y 2 — l ) ~~g + V ( u 2~ 9~) , (8)

where ~ = V u 2 .

We assume that the perturbation velocity has the form

= ~ 2 (z)e
1tkxx wt) , with propagation in the x—direction (ky =O).

This implies that 
~~~~2 

= 0 and = ~2 (z) = (~~2 (z) ,0,~~2 (z))

All other perturbation quantities are represented in a similar

manner , with a caret denoting the z-dependent amplitude in

each case. From the two components of equation (8) and the

definition of p , we obtain the following relation:

g[y 2
_c~k,~/w

2]~ — c~ ~~
w2 (z) [w2—g k~/w 2J (9)

The pressure perturbation can also be written in terms of ~,

using the continuity and energy relations (see Paper I):

- - ____  

~ [w 2_g 2
a/c~~1~ + g 

(10)p2 — w [w 2-g 2k,~/w 2)

Upon substitution of equation (9) into the z—component of

equation (8), we obtain the following second-order differential

equation for 3:
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~

~~~~~~~~~÷ [ c ~
]

~~~~~~~~
+ 
[ k ~~

+ 2 l + 
~~

2 C~ 
0 .

(11)

The nondimensional frequency, horizontal wavenurnber , and

depth , based on the values of sound speed and density scale

height in layer 2 at z=0 , are defined by

~ ... H20w , K E H k , an~ z E —~~-— . (12)2 c 2 0  2 2 0  x H 90

By transforming the independent and dependent variables according

to
2K 2 - Y/2 ”= 

(i~—~-) 
— 2K 2z = e ~ , (13)

equation (11) assumes the form

+ (b—Y) - a~ = 0 , (14)

where

= (212 -1) - b - (212-1) (15)a 2(y2 -1) 2K 2 (‘~2-l) 
‘ 

- 

(Y 2~~
l )

Equation (14) is the standard form of Kummer ’s equation (see

Abramowitz and Stegun 1964). The solutions of this equation

are given in terms of Kummer ’s functions ,

N (a,b ; Y )  = H~+ n~ 0 ~~~~ ~-i- - (16)

The c~eneral solution of equation (14) is

= D 3 M(a ,b;Y) + D~U(a ,b;Y) , (17)
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where D 3 and D are arbitrary constants and U(a ,b;Y) can be

written in terms of Kuminer ’ s f u n c t i o n s .  To i n s u r e  f i n i te total

pert u rba t i on  energy , we must  r equ i re  tha t  the ver t i ca l  velocity

of the perturbation vanish as z -
~ 

-
~~~ or as Y -

~ +c~~. This in

tu rn  requi res  that D 3 = 0. The solution for 3 as a function
of ~ in the lower layer  is then

- 
K 2 - K 

-
~~ M(a ,b; - 2K2z)

~(z) = D~ sin~ b 
e 

~
(y 2 -l) 2 

F (l +a-b)F (b) 
-

r ~1-b M(l+a-b ,2-b; 2K 2 - 2K 2~ )
— i 2K~ — 2K (~~2 —1 ) (18)
[(Y 2 l) 2 J J’ (a)F(2—b)

The vertical velocity and pressure perturbation are given in

terms of 3 by equat ions (9) and (10)

The form of the solution in the upper layer has been given

in Paper I , and we shall not repeat the analysis here. The

general form for the vertical velocity in the upper layer that

gives finite total perturbation energy is given in terms of

hypergeometr ic  func t ions  by either

2

~ 1 (z) = D 1 e F(A ,B;C; 82 (K~ -~2~ ) 
e
_Z/

~ l ) (19)

for

< ~~~~~ (20)82 (K2— ~
2) ‘

or else by
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= D i e l l  
F(B)]2 [ 2 ]e

F ( A ,l—B ;l—B+A; 8
2 (K~ _Q )~~ eZ~

’
~~1)+ 

r (c) r (A—B ) 
[B

2 (ç~2...K 2
)]B 

~~~~~~

F ( B ,l_A;l_A +B;8 1
2
Q 1 ) ez1

~
’hu 1)~ (21)

for

2 ( K 2~~~~~~~~ 
> eZ~~~ . (22)

Here

A + B = C = 2K 1 + 1 , (23)

AB = + K 1 + (‘Y 1 -l)~~~ ( 2 4 )

8
2 = v~ /c~ , (25)

and and K 1 are nondimensional frequency and wavenumber defined

as in (12), except scaling with c 1 and H 1 .

The pressure perturbation in the upper layer consists of the

sum of the gas pressure perturbation and the magnetic pressure

perturbation. The gas pressure perturbation can be expressed

in terms of the vertical velocity and its derivative as

2 L dz
p 1 

= —i p 1 c 1 w (~~2—c 2 k )  . (26)
l x

The magnetic pressure perturbation 
~m 

is found from the
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l inear iza tion of

(B 0 +B) . (B 0+13)
Pm + P m 871

where is the unperturbed magnetic pressure. The components

of the perturbed magnetic field are determined by the linearized

induction equation (equation (4) of Paper I) . We find

~~ p 1 d~’ (27)
m w . dz

The total perturbed pressure 
~~~ 

in layer  1 is expressed in

terms of the density and the Alfvén velocity as

= - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (28)

IV. EIGENMODES AND RUNNING PENUMBRAL WAVES

We now have expressions for the vertical ~.~eloci ty and the

pressure perturbation in each layer of the penumbral model , such

that the total oerturbation energy is finite. The remaining

conditions are the matching of the vertical ~.‘elocity and the

perturbed pressure at the interface z = 0 .

The sca l ing  of f r equency  and wavenumber  was done separately

for each layer in order to simplify the propagation equation as

much as possible in each case. In matching across the interface ,

we need the following relations between parameters in the two

layers:

8
2
1H 2 0  ~

‘
2

( 1  + 2 ( L 9 )
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-,

= Y~1~~(1 + 
~~~~~ 

, (30)

82
1 2

= y
~ 
(1 + 2 

l ) K~ , (31)

and equation (7)

Continuity of the vertical velocity across z = 0 requires ,

after normalization , that

~~ 
(° )  = w 2 ( O Y  = 1 . (32)

This condition fixes the values of the coefficients D 1 in equation

(19) or (21) and D , in equation (18). The remaining condition ,

the continuity of the perturbed pressure , requires that we

equate (10) and (28). This then leads to the nond imensional

condition

[(l+E 2 ) _ s 2K~ ]~f10
_
~~~ ~ ( 0 )  

- ~ 
2y2~~ 0) 

33( c2
~~

—K
~~

) — 

~ ( — K ~ / c~~) ~ ‘ ‘ )

where ~ = 3H 20 . Equation (33) is only satisfied by particular

values of frequency and wavenumber , and gives the dispersion

relation for eigenmodes of oscillation in the penumbral model .

In order to evaluate the dispersion relation (33) , the free

parameters ~ 2 , y~~, and must be specified , which then effectively

determ ines the properties of the model. Although it is possible

to evaluate (33) for different values of I in each layer (for

example , a lower value of could be taken to represent radiative

transfer in the upper layer), we chose the usual value of 5/3 for

both layers. The dispersion relation (33) was solved numerically

by inserting values of K 1 and then computing and comparing the two

61



- . .55.—.-  ‘55— - . .’- -_ 
_ ‘ ‘  . _- -----—- . —55--

sides of (33) for small increments in

Figure 2 shows the first several eigenmodes of the two—

layer penumbral model for 8
2 = 0.5 and = 

~~ 2 
= 5/3. The

value of 8
2 was chosen to represent a typical penumbra and is

slightly less than the value of 8
2 at z = 0 in our earlier

penumbral model (NT). Here we have classified the eigenmodes

as “plus” or “minus” modes, following the terminology used in

the case of an atmosphere with constant sound speed , density

scale height, and Alfvén velocity (see McLellan and Winterberg

1968 and NT). The plus modes all lie above the upper dashed line

= K in figure 2, which corresponds to L = c i k~ 
(the Lamb mode).

The minus mode (there is only one in this case) lies below the

lower dashed line ~2 = 8K which correspond s to w = v okx. There

are no eigenmodes in the region between the dashed lines. This

classification of plus or minu s modes refers here to the character

of the eigenmode in the upper layer; in the lower layer , all of

the modes have the character of acoustic waves (no magnetic

field and no buoyancy) .

Observational data on penumbral waves are included in figure

2 for comparison. The most commonly reported observational

quantities are the period and the horizontal phase velocity ,

although they are not always measured simultaneously. Giovanelli a
.

(1974 ) reports a typical phase veloc ity of running penumbral waves

of 15 km s - ~ and typical periods in the range of 180—240 s. He

did report phase velocities of up to 21 km s~~ , however , and gave

specific periods and wavelengths for four sunspots (denoted by
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F

crosses in figure 2) . The data  of Beckers and Schultz (1972)

appear to indicate a penumbral oscillation period of 255 S.

Moore and Tang (1975) observed penumbral waves with period

270±10 s in a single sunspot. Zirin and Stein (1972) state

that the periods of penumbral waves in twenty sunspots were

almost all between 240 s and 300 s, and the measured horizontal

phase velocity of 9.4 km s 1 in one spot was more or less the

same in other spots even when the period varied .

The quadrangle in figure 2 represents the range of observa-

tions: periods from 180 s to 300 s, and phase velocities from

9.4 km s ’ to 21 km ~~~ with a dashed line at 15 km s~
1 to

indicate the value that Giovanelli considers typical. The

first plus mode of the penumbral model passes through this

quadrangle. Although the particular eigerunode of oscillation of

the penumbra is determined by the excitation , and little is known

about the excitation, the present results indicate that it is the

f i r st plus eigenmode that is being excited . This agrees with our

earlier conclusions (NT).

The value 8 2 = 0.5 used in figure 2 was chosen to represent

a typical penumbra . In figure 3 the effect of changes in 8
2 on

the first plus mode is shown for a range of 8
2 of two orders of

magnitude (0.05, 0.5, 5.0). This constitutes a reasonable set

of limits on 8
2 for penumbral conditions, and is obtained by

looking at the normal variation of B (factor of 4), p (factor of

4), and c 2 (factor of 1.5) expected in different penumbrae.

We see that for any reasonable value of 8
2

, the penumbral model
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has a first plus mode within the range of observations.

The vertical distributions of velocity and kinetic energy

of the f i r s t  p lus  mode ( f o r  f3 2 = 0.5) are shown in figure 4

for K 1 0.199E and = 0 . 3 6 2 8, cor responding  to a h o r i z o n t a l

wavelength X = 3 ,000 km and period T = 250 s for c~ = 43.5 km 2s~~~.

Here the nond irnensional height is scaled everywhere by the

density scale height in the upper layer , H 1 . The velocity

distribution is fairly symmetric with the maximum amplitude

occurring slightly above z 0 in the penumbral photosphere.

The kinetic energy, on the other hand , is almost entirely trapped

in the lower layer (convection zone) with maximum energy just

below the interface. The velocity amplitude decays slowly with

height with a value of more than 25% of the maximum amplitude

at a distance of eight scale heights above the level of that

maximum .

There is a discrepancy bet~ een the heig ht of maximum

velocity predicted here (z 100 km) and that predicted in our

earlier paper (NT, z - 1000 km) . Here the A l f v é n  veloci ty

increases exponentially with height above the photosphere ,

whereas in NT it increased linearly. Thus , the downward refrac-

tion of waves is much stronger in the present model. The actual

situation is probably somewhere between these two cases. In

either ca se , the wave energy lies mostly below the height of

maximum vertical velocity , in the convection zone and low photo-

sphere.
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V. CONCLUSIONS

The present results , t aken  together with our earlier work

(NT), indicate that running penumbral waves shculd be identified

with the lowest plus mode of trapped magneto-atmospheric waves

in the penumbra . The vertical trapping is primarily due to the

increasing Alfvén velocity up into the chromosphere and the in-

creasing sound speed down into the convection zone. Most of

the energy of the penumbral waves lies in the convection zone

and low photosphere , at the same level as the expected source

of excitation (umbral oscillatory convection) . The maximum wave

amplitude occurs somewhat higher .

The results also indicate that penumbral waves should be

observable in a photospheric spectral line (see figure 4) as

well as in Hct. There is some indication of this in the obser-

vation of Beckers and Schultz (1972). Their data show a 255 s

period oscillation in the penumbra of one sunspot observed in

a photospheric line . They present contours of vertical velocity

as a function of horizontal position and time (their figure 1)

in which one may note horizontal propagation outward across

the penumbra at about the right phase speed . We plan further

observations in a search for  penumbral waves in the photosphere .
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FIGURE CAPTIONS

Fig . 1 Distribution of c 2 
and v~ with height z in the two—

layer  penumbra l  mode l .  The upper layer  (1) is iso—

the rma l  w i t h  a u n i f o r m  h o r i z o n t a l  m a g n e t i c  f i e l d .

The lower layer (2) has an adiabatic temperature

gradient and no magnetic field.

Fig .  2 The f i r s t  f i ve  plus eigenmodes and the on ly  m i n u s

eigenmode of the two- layer  penumbra l  model fo r  82 = 0 . 5 ,

= = 5/3. The quadrangle represents the ran~e of

observational data (see text) . The crosses corresr~

to particular observations (Giovanelli 1974)

Fig . 3 The first plus eigenmode evaluated for eXtreme valu€~

of 8
2 for sunspot penumbrae (see text) : 82rax =

8 2
min  = 0.05. The quadrangle represents the range of

observat ional  data . The crosses correspond to

particular observations (Giovanelli 1974).

Fig. 4 The distribution of vertical velocity and kinetic energy

of the first plus eigenmode with nondimensional height

z/ 111. The veloci ty and energy are each normal ized  to

value unity at the interface z/}11 0.
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